Control of wastewater N 2 O emissions by balancing the microbial communities using a fuzzy - logic approach

نویسندگان

  • Riccardo Boiocchi
  • Krist V. Gernaey
  • Gürkan Sin
چکیده

In this work, a fuzzy-logic controller for minimization of the nitrous oxide emission from wastewater treatment plants is developed and tested in a simulation environment. The controller is designed in order to maintain a balance between production and consumption of nitrite by AOB and NOB microorganisms respectively. Thus, accumulation of nitrite is prevented and AOB denitrification, the main N2O producer, is drastically slowed down. The controller is designed to adjust the oxygen supply according to a measured parameter which typically indicates the ratio of the activity of NOB over AOB. The controller is tested on a benchmark simulation model describing the production of N2O during both AOB denitrification and HB denitrification. Comparisons between simulation results of open-loop and closed-loop have revealed the potential of the controller to significantly reduce the amount of N2O emitted (approximately 35%). On the other side, this reduction of N2O was accompanied by an increase in the aeration costs. Moreover, a plant performance evaluation under dynamic disturbances shows that the effluent quality is compromised due to higher requirements of organic carbon by denitrifying heterotrophs. The controller can therefore be considered effective for the reduction of N2O production by AOB but would need to be coupled with a secondary control strategy ensuring a complete oxidation of the nitrogen oxides by heterotrophs to have a good effluent quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling Electrochemical Machining By Using a Fuzzy Logic Approach

New trends and the effect of key factors influence the quality of the holes produced by ECM processes. Researchers developed a fuzzy logic controller by adding intelligence to the ECM process. Maintaining optimum ECM process conditions ensures higher machining efficiency and performance. This paper presents the development of a fuzzy logic controller to add intelligence to the ECM process. An e...

متن کامل

Frequency Control of an Islanded Microgrid based on Intelligent Control of Demand Response using Fuzzy Logic and Particle Swarm Optimization (PSO) Algorithm

Due to the increasing penetration of renewable energies in the power system, the frequency control problem has attracted more attention, while the traditional control methods are not capable of regulating the frequency and securing the stability of the system. In smart grids, demand response as the frequency control tool reduces the dependence on spinning reserve and high cost controllers. In a...

متن کامل

A neuro-fuzzy approach to vehicular traffic flow prediction for a metropolis in a developing country

Short-term prediction of traffic flow is central to alleviating congestion and controlling the negative impacts of environmental pollution resulting from vehicle emissions on both inter- and intra-urban highways. The strong need to monitor and control congestion time and costs for metropolis in developing countries has therefore motivated the current study. This paper establishes the applicatio...

متن کامل

Controlling Electrochemical Machining By Using a Fuzzy Logic Approach

New trends and the effect of key factors influence the quality of the holes produced by ECM processes. Researchers developed a fuzzy logic controller by adding intelligence to the ECM process. Maintaining optimum ECM process conditions ensures higher machining efficiency and performance. This paper presents the development of a fuzzy logic controller to add intelligence to the ECM process. An e...

متن کامل

Load frequency control of two-area interconnected power system using fuzzy logic control approach

Power systems are composed of power units that are constantly connected to each other and the electric power flux is constantly moving between them. All systems must be implemented in such a way that not only under normal conditions but also unwanted inputs or disturbances, are applied. It also remains stable or returns to a stable name at the earliest possible time. The fundamental factors...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017